Sustainable Forestry in the West: Past, Present, and Future

> B. Bruce Bare, Dean College of Forest Resources University of Washington Seattle, WA 98195

February 2, 2006 – Stanford University

Topics for Today

- Talk about <u>sustainable forestry</u> in <u>historical</u> context of forestry in western North America
- <u>Discuss</u> dramatic <u>transformation</u> and <u>paradigm</u> shift in forest management (reasons and consequences)
- Role of <u>C&I</u> and <u>forest</u> <u>certification</u>
- Describe a <u>case study</u> which has some characteristics of <u>sustainable</u> <u>forestry</u>

Shift in Management Philosophy

- Agricultural Model
- Utilitarian
- Output oriented
- Stand organization
- Timber primacy (sustained yield)
- Multiple use

- Ecosystem Model
- Naturalistic
- State oriented
- Landscape view
- <u>Multi-resource</u> (sustainability)
- Integrated use

Land Use Controls in West

- Historically a zonal approach
- Production vs. protection forests
- Plantations vs. natural forests
- Commodity vs. preservation
- Exchange value vs. use value
- <u>Active</u> (intentional) vs. <u>passive</u> management

Why a Paradigm Shift?

- Changing <u>societal</u> <u>values</u> of an <u>urbanizing population</u>
- Growing influence of the science of ecology
- Global warming, biodiversity, tropical deforestation, restoration, habitat, endangered species, wildfire, clean water, and forest health

Why a Paradigm Shift?

- Additional factors
 - ecosystem <u>fragmentation</u>
 - loss of habitat connectivity
 - forest land conversion
 - absence of adequate woody debris and forest structures in the managed forest

What Is Sustainability?

 To manage (both passive and active), and use the products and amenities of managed forests, natural wild lands, and urban and suburban environments so that they are maintained in a productive state over the long term

What Is Sustainability?

- A set of <u>activities</u> or <u>processes</u> that produce desired <u>products</u> and <u>services</u> over <u>long periods</u> of time
- <u>Rational</u> approach that seeks a <u>dynamic</u> equilibrium
- Uses interdisciplinary set of social, ecological and economic sciences in an integrated fashion
- Future generations have the <u>opportunity</u> to enjoy the same <u>products</u> and <u>amenities</u>

- <u>Sustainable</u> <u>forests</u> are the desired goal
- Sustainable forestry or sustainable forest management is the means to the desired end

- Sustainable forestry is the suite of forest policies, plans, and practices that seek to sustain a specified array of forest benefits in a particular place
- Sustainability is a process and a goal, not a single end-point condition

Source: NCSSF, 2005. Science, Biodiversity, and Sustainable Forestry: A Findings Report of the National Commission on Science for Sustainable Forestry, Washington, DC

- A type of <u>management</u> that views the forest not as the source of any one economic product or service, but as an <u>integrated</u> whole
- Respects the <u>full range</u> of <u>environmental</u>, <u>social</u>, and <u>economic</u> values of the forest and attempts to <u>integrate</u> these diverse values

Source: Roundtable on Sustainable Forests

 Managing a forest to meet all existing regulations such that <u>environmental</u>, <u>social and economic factors</u> are <u>balanced</u> to meet the needs of the <u>present</u> without <u>compromising</u> the ability of <u>future</u> <u>generations</u> to meet their needs

Sustainable Forestry Initiative

 A land stewardship ethic that integrates reforestation, growing, and harvesting trees for useful products while conserving soil, air, and water quality, wildlife and fish habitat and aesthetics, and protecting: a) the resource from fire, pests, and diseases and b) lands of special significance

Source: American Forest and Paper Association

Sustainable Forestry Initiative

Consider key values:

- biodiversity
- habitat protection and enhancement
- riparian/wet land protection
- protection of productive capacity
- protection of endangered plants and animals
- protection of cultural, spiritual, and historical sites

Source: American Forest and Paper Association

Sustainable Forestry Initiative Standard Objectives

 Ensure long-term <u>harvest levels</u> based on the **use** of the best scientific information

 Ensure long-term <u>forest productivity</u> and <u>conservation</u> of forest resources through prompt reforestation, soil conservation, afforestation, and other measures Sustainable Forestry Initiative Standard Objectives

- Protect <u>water</u> <u>quality</u> in streams, lakes, and other water bodies
- Manage the quality and distribution of <u>wildlife</u> <u>habitats</u> and contribute to the <u>conservation</u> of <u>biological diversity</u> by developing and implementing <u>stand</u>- and <u>landscape</u>-level measures that promote <u>habitat diversity</u> and the <u>conservation</u> of forest plants and animals, including aquatic fauna

Sustainable Forestry Initiative Standard Objectives

- Manage the <u>visual impact</u> of harvesting and other forest operations
- Manage lands that are <u>ecologically</u>, <u>geologically</u>, <u>historically</u>, or <u>culturally</u> important in a manner that recognizes their special qualities
- Promote the <u>efficient</u> <u>use</u> of forest resources
- Improve <u>forestry research</u>, <u>science</u>, and <u>technology</u>, upon which <u>sound</u> forest management <u>decisions</u> are based

 Definitions convey that sustainability applies to many resources in addition to timber; considers the needs of future generations as well as those of the present; is concerned with ecological functions and condition; and is as much a social and economic as a bio-physical process

Criteria and Indicators

 Criteria and Indicators for the <u>Conservation</u> and <u>Sustainable</u> <u>Management</u> of <u>Temperate</u> and <u>Boreal Forests</u> (<u>Montreal Process</u>)

 USA signed in Feb. 1995 as the Santiago Declaration

Criteria and Indicators

Santiago Declaration

- Provides a <u>common framework</u> for <u>describing</u>, <u>assessing</u> and <u>evaluating</u> a <u>country's</u> progress toward <u>sustainability</u> at the <u>national</u> level
- Manages forests at the ecosystem level
- Provides information to decisionmakers and the general public

Criteria and Indicators

- Conservation of <u>biological</u> diversity 9
- Maintenance of productive capacity of forest ecosystems 5
- Maintenance of forest ecosystem <u>health</u> and <u>vitality</u> 3
- Conservation and maintenance of soil & water resources 8
- Maintenance of forest contribution to global carbon cycles 3
- Maintenance and enhancement of long-term <u>multiple</u> <u>socio</u>-<u>economic</u> <u>benefits</u> to meet the needs of societies 19
- Legal, institutional and economic framework for forest conservation and sustainable management 20

Green Forest Certification

Major systems in North America –

- <u>Sustainable Forestry Initiative</u> (SFI)
- Forest Stewardship Council (FSC)
- Canadian Standards Association (CSA)
- The <u>Program for the Endorsement of Forest</u> <u>Certification</u> (PEFC) is a global umbrella that recognizes <u>national</u> certification schemes

Green Forest Certification

- Promotes <u>responsible</u> forest management
- Increases <u>awareness</u> among public
- Incorporates elements of the international C&I
- Has a world-wide impact in both tropical and temperate regions

Sustainability Occurs at the Intersection

Observations

 A balance of <u>ecological</u> and <u>economic</u> values in a <u>socially</u> acceptable fashion

 The use of proper science is absolutely <u>necessary</u> to find the proper <u>balance</u> but is by no means sufficient

Observations

- Value preferences expressed through the economic, political ,and legal systems will largely determine the ultimate balance
- Requires that we adopt an integrated, holistic, adaptive approach that simultaneously considers utilitarian values as well as ecological and social values

• May accomplish this in several ways

Models of Sustainability

- Find best <u>economic</u> solution subject to <u>ecological</u> sustainability constraints
- Find best <u>ecological</u> solution subject to <u>economic</u> sustainability constraints
- Jointly optimize ecological and economic values (tradeoffs)

Observations

 The challenge to actually define and implement sustainable forestry is tremendous

 It may be the greatest <u>challenge</u> for educators, natural resource managers, scientists, and policy makers at the start of this Century

Case Study Observations

- There are several examples of where we have <u>successfully</u> achieved adoption of a <u>sustainable</u> forestry program in <u>Washington</u>
- Some may argue that the HCP for our WDNR lands coupled with regulatory forest practices is an example of such a program

Case Study Observations

Others might argue that forest lands <u>certified</u> under the <u>FSC</u> or <u>SFI</u> principles qualify as examples Others would cite the lack of compliance with the seven indicators and 67 criteria of the Montreal Process to disgualify some of these examples

Case Study Observations

- Case study involves the Washington State <u>trust lands</u> that are managed by the <u>Washington State Department of</u> <u>Natural Resources</u>
- We consider the <u>1.4</u> million acres lying <u>west</u> of the crest of the Cascade Mountains in the DF region

Key Statutes: Multiple Use

 Management and administration of state-owned lands under the jurisdiction of the WDNR to provide for several uses simultaneously (on a single tract and/or planned rotation) of <u>one or more</u> uses <u>on</u> and <u>between</u> specific portions of the total ownership

Key Statutes: Sustained Yield

 Management of the forest to provide harvesting on a <u>continuing basis</u> without major <u>prolonged curtailment</u> or <u>cessation</u> of harvest

Timber Harvest Policy

 The Department will manage state forest lands to produce a sustainable even flow harvest of timber subject to economic, environmental and regulatory considerations (Forest Resource Plan, 1992)

Sustained Yield (Timber Mgt.)

Two historic interpretations:
Protection of productive capacity
Continuous and relatively smooth harvest of timber over time

Sustained Yield

Classical model of sustained yield

- <u>Regulated forest</u> is the <u>goal</u>
- Harvest at age where <u>average</u> annual growth is maximized
- Harvest oldest age classes first
- Volumetric goal

Uneven-aged variant is to seek a balanced size class distribution using DeLiocourt's 'q'

Forest Planning Is Complex

- Multiple objectives and players (tradeoffs)
- Long <u>time</u> horizons, <u>variability</u>, and <u>uncertainty</u>
- Hierarchical in nature
 - <u>Strategic</u> (long term sustainability plans)
 - Tactical (landscape plans)
 - Operational (project plans)
- Challenging to <u>coordinate</u> levels of planning (time and space)

1996 UW study of alternatives for the HCP

Planning Scenarios

WDNR: Uses <u>60+</u> year rotations; on/off base acre allocations as shown; no wildlife thins; no partial cuts in the 60-70 year old age classes; even flow harvest constraints; no harvests in riparian or wetland areas; nondeclining late seral conditions

Planning Scenarios

ALTS: Uses <u>50+</u> year rotations; on/off base acre allocations as shown; wildlife thins; partial cuts in the 60-70 year old age classes; + 25% change in harvest from one decade to the next; partial harvests in riparian or wetland areas if on-base; nondeclining late seral conditions

W. Washington Acreage Summary

	ALTS	DNR
	Acres	Acres
On Base	1,178,154	1,035,586
Off Base	247,937	390,508
Total	1,426,091	1,426,094

Scenario Results

	Asset Values (\$ Billion)			
	DNR	ALTS	% Difference	
W Washington	7.505	9.799	31%	ACRES
North Puget	1.945	2.487	28%	381,403
South Puget	0.85	1.091	28%	141,815
Columbia	1.581	1.976	25%	283,021
Straits	0.715	1.034	45%	113,143
OESF	0.781	1.379	77%	240,835
South Coast	1.416	1.746	23%	265,877
Six Unit Total	7.288	9.713	33%	1,426,094
% Difference	3%	1%		

W Washington Timber Harvest (DNR\$7.5;ALTS\$9.8)

W Washington Net Revenue

W Washington Inventory

W Washington Old Forest Habitat

Version Two

2004 WDNR study of alternatives for the Sustainable Harvest Calculation

Recap of the Six Alternatives

• Alternative 1

- No Action Alternative : Current Operations

- Alternative <u>2</u>
 - HCP intent
- <u>Alternative</u> <u>3</u>

Combined Ownerships

Recap of the Six Alternatives

• <u>Alternative</u> <u>4</u>

- Passive Management Approach
- <u>Alternative 5</u>
 - Intensive Management Approach
- Preferred Alternative
 - Innovative Silvicultural Management

Key Outcomes

- Gross & Net income (timber harvest)
- Variability of income
- Forest <u>Structure</u> and <u>Older</u> <u>Forest</u>-<u>dependent</u> species
- Implementation considerations

Key Policy Choices for the BNR

- Active vs. <u>Passive</u>
- Area to Manage
- Ownership Groups
- Harvest Flow Approach
- Old Growth Protection
- Volume vs. Value Regulation

Key Policy Choices for the BNR

<u>Riparian Management</u>
<u>Northern Spotted Owl Management</u>
<u>Legacy and Reserve Tree</u>

Stand Structure Distribution

Stand Structure Distribution

Stand Structure Distribution

Timber Harvest Potential (MMBF/year)

61

Harvest Area (acres/year)

Proposed Timber Harvest Level

Proposed Timber Harvest Level (PF)

Harvest Type (area/year)

Percent of Harvest Volume by Wood Type

Summary Points

Revenue Generation

Conservation Benefits

• Less constrained flow control provides significant opportunities for active management

• Ownership group policy needs further discussion and a focus on individual trust objectives

• Harvest regulated by value, and economically determined rotations in non-habitat areas provide greater returns • Longer rotations benefit more complex structures

 Active management has to be the "right type" of silviculture to accelerate the development of complex stand structures

 Passive management appears to be an option for developing complex forest structures, albeit a risky and expensive one (\$106 vs. \$208 million in gross revenues between Alts. 1 and 6)

The End